
Time Domain Pitch Recognition
Michael G. Chourdakis, Haralampos C. Spyridis

 Music Department, University of Athens, Greece.
{m@turboirc.com, hspyridis}@music.uoa.gr

Abstract — The power of Time Domain based methods over
Frequency Domain methods for signal processing and pitch
recognition; The suggestion of new Notation Symbols in
order to represent all possible frequencies in the European,
Byzantine, or Electronic (MIDI) notation.

Ι. INTRODUCTION

The following will be described:
1. The advantages of time-domain methods over the

frequency-domain methods in digital signal processing.
2. The methods used to identify the pitch, and the

collection of the results to either a frequency vector, or to
music notation.

3. The success probabilities of the methods, and the
problems that may be encountered at the process.

4. The creation of new music notation symbols,
needed to describe music notes that they have slightly
different frequencies than the standard European
frequency vector; these symbols will equally apply to
other notation systems, like the Byzantine Notation or the
e-notation (MIDI).

5. The application of the methods by experimenting.
The end result will be the ability to detect and display

the pitch of a signal automatically from the PC, without
the aid, recommendation, or otherwise interference of a
human being, which may be less or more influenced by
music knowledge and/or music experience.

Furthermore, we will be able to write down the
recognized pitch with new symbols, to any main notation
scheme (e.g. The European Notation, the Byzantine
Notation, the MIDI notation etc).

There are many applications for our method:
1. We can check and fix an instrument’s accurate

tuning, either a conventional instrument or an electric
one.

2. The ability to verify the correct performance of a
musical piece, e.g. the ability to check if a singer will
properly sing their song, based on known estimated
European, Byzantine or other specific-frequency
climaxes.

3. The ability to write down any sort of simple or
complex vector of music symbols (notes) with altered
frequency, in a compatible format which is easy
understood and mastered by the music student.

II. THE SOUND SIGNAL
The sound signal generated from a sound source

(voice, instrument) is always a function of time:

() sin(2) sin(2) ... sin(2)0 0 1 1S t A f t A f t A f t (1)

Where A1, A2, A3 ….are the local peaks of each
oscillation (amplitudes), and f1, f2, f3… fν are the
frequencies generated by the sound source. In theory, a
sound source generates an infinite number of signals with
decreasing amplitude; in practice, we are only interested
in the few first frequencies because all others’ amplitude
is practically zero.

Fig. 2.1. Sample Sound Signal.

 A sound signal passing through an ADC (Analog to
Digital Converter) and sampled with a Sampling
Frequency S, will have, according to the Niquist
Theorem, a limited number of possible frequencies not
over the value S/2 [1].

That signal would be periodic if each of the generated
frequencies was an integer multiply of the first generated
frequency, since for the equation (1) it is:

(2)

() 0 ,
sin () 0 sin () 0 ,
S t t

x x

III. THE FOURIER TRANSFORM
The Continuous Fourier Transform (CFT) of a

continuous function of the time f(t) is a function of
frequency/intensity, described by the following formulas:

(3)() () i tf f t e d t

(4)() () i t

t

f f t e

Equation (3) is for continuous signals, equation (4) is
for discrete signals.

Fig 3.1. Signal represented as a function of time

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

307

Fig 3.2. Signal represented as a function of frequency

Due to the Heisenberg Uncertainty Principle, we are
not able to detect a frequency at a given point of the
signal, but we have to apply a transformation Window to
the signal in order to perform the Fourier Transform.
Each of the available Windows has its advantages and its
disadvantages; our main problem is that we cannot detect
the frequency with great accuracy.

Fig. 3.3. Applying a Window

To use the Fourier Transform and to work on the
Frequency Domain would apply the following limits:

1. The Fourier Transform works best with periodic
signals. In theory, all signals generated by sound sources
should be periodic; in practice, none of them are. The
result of this is the ‘Gibbs Phenomenon’, the ‘leaks’
generated by the Fourier Transform’s inability to work
with such signals.

Fig 3.4. Gibbs Phenomenon

The second limitation of the Fourier Transform applies
to the discrete version of it. The Discrete Fourier
Transform, used in discrete signals and in the PCs,
accepts as input a fixed number of samples and returns
the same number of complex numbers [2].

The magnitude of each of these complex numbers
describes the intensity of a specific frequency found in
the signal. This frequency can be estimated by the
formula:

(5)i
iSRf
N

Where SR is the sample rate of the signal, and i is the
index of the frequency in the complex vector returned by
the Fourier Transform. So we can immediately see that
the Fourier Transform can only return information for a
fixed number of frequencies (Between 0 and SR/2) each
of them must be calculated from the above formula for
integer values of i.

What happens to the frequencies found for non-integer
values of i? Their magnitudes are mixed with the closer
frequency, which would result in false reports by the
Fourier transform, especially when trying to detect very
slight pitch changes [3].

All these would force us not to use Frequency Domain
methods for accurate pitch estimation, but rather use
Time Domain methods instead.

The main advantages of Time Domain methods are:
1. They can give better results for non-periodic

signals.
2. They can work within a limited collection of

samples.
3. Their results obtained are accurate, and accuracy

increases with higher sampling rate values.
The main difficulty in using the Time Domain

Methods is speed. Signals have to be filtered by less or
more complex filters in order to be analyzed in the Time
Domain Mode; this filtering and preprocessing, as also
the Time Domain Processing itself can take a lot of time.

Fortunately, with the high-power modern PCs at our
service nowadays, we need not anymore worry about the
time performance of our methods.

IV. PITCH RECOGNITION

We record the signal from the microphone or other
sound input. After recording, the signal must be pre-
processed.

Preprocessing involves either low pass filters to cut off
unneeded frequencies (If we can assume that there are
unneeded frequencies, for example, when recording a
human voice which has a limited frequency bandwidth) ,
or other algorithms, more or less complex, aiming to
simplify the signal as much as possible [4].

After that, the signal is analyzed by our main algorithm
which defines a structure, describing the frequency, the
time and the amplitude, and generates a vector of items
describing those elements for the whole signal.

Fig. 4.1. Signal Simplification

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

308

The next step is to analyze, connect, possibly edit, and
possibly reject those results, in order to convert the full
signal to the music notation. This music notation can be
either the European:

Fig 4.2. Results at the European Music Notation

Or, it can be the Byzantine Notation, which is a
notation describing relevant steps between notes:

Fig 4.3. Byzantine Notation

V. THE PROBLEMS
In theory, every signal should be clean and easy to be

analyzed. In practice, almost each of the recorded signals
has its problems.

The most common problems encountered are:
The signal’s amplitude is very low; In which case it

must be amplified in order to be further analyzed:

Fig 5.1. Amplifying the signal.

a) One of the frequencies of the signal has greater
intensity than the fundamental frequency f0. This
problem, one of the reasons that Fourier Transforms also
fail, is resolved by analyzing the signal by convolution
and statistical methods to detect if there is a case of a
fundamental frequency with a lowered intensity.

Fig 5.2. The Fourier transform shows the first (fundamental)
frequency f0 weaker than f1.

b) The signal has so much noise that it cannot be
analyzed further without noise reduction. This usually
involves high-pass filtering the signal in order to remove

as much noise as possible, before retrying the recognition
process.

Fig 5.3. Noisy signal

c) The signal might be unstable. For example, the
human voice is almost always unstable, i.e. when
attempting to sing the note ‘C’, the human voice doesn’t
keep a fixed frequency. In that case our methods involve
statistical analysis and the ‘amplitude’ hint to detect if
there is an actual change to the frequency, or it might be a
case for a human instability feature like vibrato [5].

Fig 5.4. Unstable signal

VI. CURRENT NOTATION PROBLEMS
At the current European notation scheme, there is no

way to represent a note of which its frequency is slightly
altered.

For example, we can try to represent the Frequency
130.81 Hz using the note ‘C’, and the frequency 138.59
Hz using the note ‘C#’. But, we are not able to draw a
symbol that would represent any frequency between these
two numbers:

Fig 6.1. Frequencies of European notes.

When taking MIDI into consideration, we have the very
same problem, since in MIDI, the 128 available notes are
mapped to the European notes (From A0 to B7).

The same problem occurs to the Byzantine Notation.
The Byzantine notation is a relative representation of the
symbols; each symbol is not a fixed note, but rather an
indication of how many notes we should go up or down.
For example, When we are in ‘C 130.81’ (Byzantine

‘ΝΗ’), and we encounter the 1 (Byzantine Symbol
‘OLIGON’), we should get to the next note, in which
case it is the Byzantine ‘PA’ (D). The frequency of that D

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

309

is not fixed (as in the European notation), but it depends
on the mode definition; in byzantine music, there are 8
different modes and the octave is divided into 72 equal
parts (and not 12 semitones, as in the European). In the
following example, PA is 146.83. But we still have the
problem to represent, say, 144Hz.

Fig 6.2. Byzantine notes pronounced ‘NI’, ‘PA’, ‘VOU’ and their
frequencies for a specific Byzantine mode.

VIΙ. THE NEW NOTATION SUGGESTIONS
A proper solution to the above problems should meet

the following restrictions:
1. It should be easily to understand and learn.
2. It should be subject to further revision.
3. It should be possible to be ignored by human beings

or instruments not designed to take advantage of it,
and/or take advantage of the micro-tuning.

4. It should be compatible with existing symbols and
notation.

5. It should not be confused with existing symbols of
sharp and flat.

6. It should be able to divide the entire octave to any
defined number of parts, up to the international standard,
the ‘cent’.

7. It should take as little space as possible, in order not
to confuse the reader.

8. It should be usable in PCs and existing sound and
score processing applications.

We define 2 new symbols: The Simple Sharp ‘/’ and
the Simple Flat ‘\’.

We define, as a new symbol for a single sharp, the
symbol of ‘/’ (forward slash), to be placed to the left of a
note:

Fig 7.1. Simple Sharp

More slashes at the left of the note would suggest
double, triple sharp etc.

We define, as a new symbol for a single flat, the
symbol of ‘\’ (Backward slash) to be placed to the left of
a note:

Fig 7.2. Simple Flat.

More slashes would suggest double, triple flat etc.

In the rare case we might need more sharps/flats than
the available space permits; we can use a number before
the simple sharp/simple flat symbol.

The simple sharp/simple flat symbols can co-exist and
can be combined with the existing traditional sharp/flat
symbols:

Fig 7.3. Examples of the new symbols.

We define the symbol “q” to indicate the number of
sections that the octave should be divided. A musical
score can contain an indication with the “q” symbol at
the start, or at any other place. The syntax is:

q = a/b

Where b = the number of sections that the octave
should be divided, and a = the number of sections
assigned to a simple sharp or simple flat.

For example, q = 1/24 would indicate that the octave
is divided to 24 sections, and a single sharp or flat should
add/subtract 1/24 to the frequency of the note they were
applied.

In case that there is no q indication in the music score,
the default is q = 1/12, in which case, the simple flat and
sharp are equals to the traditional flat and sharp #.

The same symbols apply to the Byzantine notation. We
put them above the byzantine symbols:

Fig 7.4. Byzantine symbols with simple sharps/flats.

The same symbols are applied to MIDI. We define:
a) A recommendation at the start of each MIDI track

(which may reoccur anywhere at the track), to indicate
the division, using a META-Event (Midi 0xFF message).

b) A controller message (MIDI 0xBX message) to be
placed before each MIDI note message (MIDI 0x9X) in
order to alter its frequency by a number of simple
flats/sharps.

These extensions are compatible with existing MIDI
software, because applications that are not able to
recognize our new symbols will simply ignore them and
play the MIDI file as if those symbols wouldn’t exist.

As a result, we have created a simple method of
representing any frequency we need to the musical score,
which is easy for both human beings and software to
interpret.

REFERENCES
[1] R.W.Hamming, “Numerical Methods for Scientists and

Engineers” Dover Publications, New York, 1986, pp. 557 – 560.
[2] Francis J. Flanigan, “Complex Variables, Harmonic and Analytic

Functions” Dover Publications, New York, 1983.
[3] Richard A. Silverman. “Introductory Complex Analysis”. Dover

Publications, New York, 1984, pp. 1 – 24.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

310

[4] R.W.Hamming, “Digital Filters” Dover Publications, New York,
1998.

[5] Alan V. Oppenheim, “Discrete-Time Signal Processing”,
Pearson Education Publishing, 2001.

[6] Steve Smith, “The Scientist and Engineer's guide to Digital
Signal Processing” California Technical Publishing, 1997.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

311

